能级劈裂的大小与磁场大小有关,磁场大小与空间位置有关。
所以在存在MOT的情况下,二能级原子会受到一个Ft的力。
此时施加两束对射的圆偏振光,当磁场正向时,相较于o+的光,o-的光失谐小,更接近与原子共振。
因此原子会沿着o-的光传播方向移动到磁场接近0的位置。
磁场负向的地方则相反,最终还是会将原子推向磁场接近于0的地方。
最终。
原子就会被囚禁在磁场为0的点上。
这个原理非常简单,也非常好理解。
MOT可以聚集很多的原子,一次大约可以聚集千万以上的量级,同时原子密度也会比较大,大概在10^93左右。
就相当于有一辆铲车,把停在高速路上的所有汽车都“推,到了一起。
当然了。
传统MOT的实验对象是原子,实验的时候加入的都是原子气体——没错,都是气体。气态金属原子这概念不知道现在的课本上讲过没有,印象中应该是有的
而与原子不同,徐云他们此次需要考虑的是孤点粒子。
二者无论是在体积还是难度上都无法同一而论,只是孤点粒子同样为电中性,所以孤点粒子是极少数可以用MOT原理进行凝聚的微粒。
不过说一千道一本章未完!
第三百五十八章这章其实揭示了一个真相上
万,这终究只是理论上的可行性。
能不能成功将孤点粒子基态化,还需要看最终的实操环节。
“陆教授。”
操作台边,徐云正在和陆朝阳介绍着自己的实验思路:
“我的想法是这样的,首先,我们在束流通道的内部利用倏逝波构造出一个不均匀光强的光场。”
“接着呢,再根据光场分布,去铺设相同趋势的电场。”
“如此一来,每个点倏逝波产生偶极力的不同,便会让微粒不停的蹦
“每蹦跶一次,我们就略微降低囚禁电场,原子之间的静电斥力就会让带电微粒散开,外侧的粒子就会逃逸。
“而孤点粒子,则由于没有静质量也没有带电性的原因,将会永久性的保存在通道内。”
徐云的这个方案用人话...用通俗点的话来说,就相对于现实里的抖簸箕。
铅离子碰撞后的微粒,就相当于掺杂了泥土、种子、虫子、杂草的混合物。